A Global Assessment of Salmon Aquaculture Impacts on Wild Salmonids

Jennifer S. Ford*, Ransom A. Myers†

Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada

Since the late 1980s, wild salmon catch and abundance have declined dramatically in the North Atlantic and in much of the northeastern Pacific south of Alaska. In these areas, there has been a concomitant increase in the production of farmed salmon. Previous studies have shown negative impacts on wild salmonids, but these results have been difficult to translate into predictions of change in wild population survival and abundance. We compared marine survival of salmonids in areas with salmon farming to adjacent areas without farms in Scotland, Ireland, Atlantic Canada, and Pacific Canada to estimate changes in marine survival concurrent with the growth of salmon aquaculture. Through a meta-analysis of existing data, we show a reduction in survival or abundance of Atlantic salmon; sea trout; and pink, chum, and coho salmon in association with increased production of farmed salmon. In many cases, these reductions in survival or abundance are greater than 50%. Meta-analytic estimates of the mean effect are significant and negative, suggesting that salmon farming has reduced survival of wild salmon and trout in many populations and countries.

Introduction

Since the late 1970s, salmon aquaculture has grown into a global industry, producing over 1 million tonnes of salmon per year [1]. The majority of this biomass is held in open net pens in coastal areas through which wild salmon migrate on their way to and from the ocean. A number of studies have predicted or evaluated the impacts of salmon farming on wild salmon through a single mechanism, in a given area. It is clear that some salmonids are infected and killed by sea lice originating from salmon farms [2–5], that other diseases have been spread to wild populations from salmonid farming activities [6,7], and there is evidence that salmon parr are at lower density in areas of Scotland where there is salmon aquaculture [8]. In addition, farmed salmon escape in all areas where salmon aquaculture is practiced, and although their breeding success may be low on average, competition for mates and hybridization with wild salmon are likely to reduce survival of wild populations [9,10]. It is well established that wild salmonids can be negatively affected by salmon farming [11], however, the importance of these interactions at the population level has rarely been determined [2]. To determine population level impacts, we examined temporal trends in the abundance and survival of wild salmonids (Figure 1 and Figure S1). Our study contrasted trends in wild populations exposed to potential aquaculture impacts with those of populations not exposed. Populations in which juvenile salmonids pass by salmon farms during their migration were considered to be exposed to impacts of salmon farming. Exposed populations were carefully paired with control populations in the same region whose migrations did not lead past farms, but which otherwise experienced similar climate and anthropogenic disturbances. Use of such paired comparisons allowed us to control for confounding factors such as climate to detect population level impacts. Using the Ricker stock recruit model [12], we performed 11 comparisons, involving many stocks from both sides of the Atlantic and from British Columbia in the Pacific (Table 1, Data section of Materials and Methods).

Results

All estimates of the effect of aquaculture on survival or returns were negative. Both random effects estimates of the mean effect were negative and highly significant (Figure 2), indicating a very large reduction in survival and returns in populations exposed to aquaculture. Under the dynamics of Equation 1 (see Materials and Methods), percent change in survival or returns is represented by (1 − exp(γ * Pα/2 * 100)) where γ is the coefficient of aquaculture production (P) for region k. For example, the estimated change in survival per tonne of salmon farming (γk) for Bay d’Espoir in Newfoundland was estimated to be 0.026 (Figure 2). In 2003, the farmed salmon harvest from this area was 1,450 tonnes (t), so the estimated decrease in survival is (1 − exp(−0.026 * 14500.5)) * 100 = 63% (95% CI: 44%–80%), relative to what it would be in the absence of farms. Survival and total returns of many stocks were found to be reduced by more than 50% (Figure 2), for each generation. If all exposed populations were passing by farms with a total annual harvest of 15,000 t, the mean estimated total reduction in survival would be 73% (95% CI: 29%–90%) (Figure 2). Many regions now have farmed salmon production in excess of 20,000 t/y.

Generally, Atlantic salmon populations were depressed more than Pacific salmon populations, particularly Atlantic

Academic Editor: Callum Roberts, University of York, United Kingdom

Received October 17, 2006; Accepted January 3, 2008; Published February 12, 2008

Copyright: © 2008 Ford and Myers. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abbreviations: AIC, Akaike information criteria; BC, British Columbia; DFO, Fisheries and Oceans Canada; SA, statistical area

* To whom correspondence should be addressed. E-mail: jenford@ecologyaction.ca

† Deceased
salmon in Atlantic Canada. Irish sea trout were also estimated to have been very strongly reduced by impacts of salmon farming, whereas estimated impacts on Atlantic salmon in Scotland depended on the data used. In British Columbia (Pacific Canada), only pink salmon showed significant declines correlated with salmon aquaculture.

Results are reported for a model including autocorrelated errors and with λ set at 0.5, rather than 1 or 2, because this minimized the Akaike information criteria (AIC) for most regions [13]. The parameter λ allows for the impacts of salmon farming to change nonlinearly with the aquaculture production. A λ of 0.5 indicates that relatively small amounts of aquaculture will depress wild populations, but the effect does not increase proportionally to aquaculture production. See Tables S1 and S2 for results of alternative models.

For the New Brunswick comparison, the outer Bay of Fundy rivers are located much closer to salmon farms than the other exposed rivers. If only these outer Bay of Fundy rivers are considered exposed to salmon farming, and other Bay of Fundy rivers (inner Bay of Fundy and Saint John River) are included among the controls, the overall estimates (i.e., meta-analytic means) are still significant and negative in both versions of the analysis.

Discussion

We have estimated a significant increase in mortality of wild salmonids exposed to salmon farming across many regions. However, estimates for individual regions are dependent on assumptions detailed in the Materials and

Figure 1. Adult Returns of Wild Salmonids in Control (Black) and Exposed (Blue) Stocks, with Aquaculture Production (Red)

For plotting only, the returns to controls and exposed stocks have been separately summarized by a multiplicative model ($\log(\text{Returns}_i) = a_i + d_i + e_{iY}$; variables are the same as in Equation 1). The mean returns across stocks for each year are shown. Note that left-hand axes are on a log scale. Only even year values are available for pink salmon prior to 1989. Irish salmon are not included because only marine survivals (not returns) are available.

doi:10.1371/journal.pbio.0060033.g001
Salmon Farming Affects Wild Salmon

Methods section, and the estimates often have large confidence intervals. Given that the data analysed are affected by considerable noise—including changes in fishing and environmental factors—the important result of this study is that we are nonetheless able to detect a large, statistically significant effect correlated with trends in farmed salmon production. The significant increase in mortality related to salmon farming that we have estimated in almost all cases is in addition to mortality that is also acting on the control populations. In most cases, control populations were also experiencing decreases in marine (and sometimes freshwater) survival, for reasons that are only partially understood. At the same time, fishing mortality has been reduced or eliminated in many areas, which may have partially masked high mortalities associated with aquaculture.

A key assumption in this study is that exposed and control areas do not differ in a systematic way across regions. We have identified three possible ways that exposed and control sites could differ systematically: first, salmon farms could be established only in areas where wild stocks have already collapsed; second, salmon farms could be established in areas where habitat is more disturbed by human activities; or, third, climate factors could differ between the exposed areas and the controls in a systematic way.

Declines in control and exposed salmonid populations preceded the growth of the salmon aquaculture industry in some regions, but inspection of the data used do not indicate that salmon populations in the majority of our regions had declined dramatically in the exposed areas only, before the start of salmon farming (averaged returns data are shown in Figure 1). In regions such as Scotland, where declines precede the start of salmon farming, the strong aquaculture effect estimated reflects a faster decline in exposed populations concurrent with the growth of salmon farming.

Areas that we consider exposed do not seem to be more developed than control areas in general. In the Atlantic, most areas have been highly altered by human activities for hundreds of years, but there is no obvious difference between the control and exposed groups in this regard. In British Columbia, all areas considered are very remote, and the main type of anthropogenic disturbance in rivers would be forestry. Comprehensive forestry records at the watershed scale are not easily available, but logging in British Columbia’s Central Coast is extensive, both historically and recently [14]. It should be noted that the comparisons in British Columbia include large numbers of rivers (> 80 rivers in each case), so differences in anthropogenic effects would have to hold over many watersheds to explain the effects we estimate.

Finally, it is also very unlikely that our results are due to a climate driven trend in which more southerly populations show stronger declines than populations to the north. Although our exposed populations are to the south of control populations in three of five regions, differences in latitude are small. In New Brunswick, the control populations are to the north of the exposed populations, but by less than 200 km, and the headwaters of some of the exposed populations are adjacent to those of the controls. In Newfoundland, the difference in latitude between exposed and control populations is similarly small. In British Columbia, the control populations are also to the north, but by less than 300 km. Also, Mueter et al. [15] found that pink and coho salmon from all of the British Columbia populations we have examined respond similarly to large-scale climate trends. Thus, the pattern we found in this study does not seem attributable to a systemic difference between the control and exposed areas.

We estimated higher impacts on populations in the Atlantic than those in British Columbia, possibly because Atlantic salmon populations are conspecific with farmed salmon, and therefore susceptible to genetic effects from

Table 1. Summary of Populations Included

<table>
<thead>
<tr>
<th>ID</th>
<th>Species</th>
<th>Country</th>
<th>Exposed Region</th>
<th>Control Region</th>
<th>Type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sea trout</td>
<td>Ireland/UK</td>
<td>Ireland (Western Region)</td>
<td>Wales</td>
<td>C</td>
<td>[26,16,17]</td>
</tr>
<tr>
<td>2</td>
<td>Atlantic salmon</td>
<td>Scotland</td>
<td>West Coast</td>
<td>East Coast</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Scotland</td>
<td>West Coast</td>
<td>2</td>
<td>East Coast</td>
<td>T</td>
<td>[29]</td>
</tr>
<tr>
<td>4</td>
<td>Ireland</td>
<td>Western Region</td>
<td>4</td>
<td>Rest of Ireland</td>
<td>T,S</td>
<td>[28]</td>
</tr>
<tr>
<td>5</td>
<td>Canada</td>
<td>Bay d’Espoir</td>
<td>1</td>
<td>Rest of Newfoundland</td>
<td>T</td>
<td>[31]</td>
</tr>
<tr>
<td>6</td>
<td>Canada</td>
<td>Fundy, Inner</td>
<td>2</td>
<td>Gulf of St Lawrence, Atlantic Coast</td>
<td>T,S</td>
<td>[28,35,36,39]</td>
</tr>
<tr>
<td>7</td>
<td>Canada</td>
<td>St John River</td>
<td>2</td>
<td>Gulf of St Lawrence, Atlantic Coast</td>
<td>T,S</td>
<td>[28,37,39,40]</td>
</tr>
<tr>
<td>8</td>
<td>Canada</td>
<td>Fundy, Outer</td>
<td>2</td>
<td>Gulf of St Lawrence, Atlantic Coast</td>
<td>T,S</td>
<td>[28,37,39,40]</td>
</tr>
<tr>
<td>9</td>
<td>Coho salmon</td>
<td>Canada</td>
<td>Johnstone Strait</td>
<td>BC Central Coast</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Pink salmon</td>
<td>Canada</td>
<td>Johnstone Strait</td>
<td>BC Central Coast</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Chum salmon</td>
<td>Canada</td>
<td>Johnstone Strait</td>
<td>BC Central Coast</td>
<td>S</td>
<td>49</td>
</tr>
</tbody>
</table>

* Type C refers to catches, T refers to scientific traps, and S refers to other scientific surveys.
 * n is the number of populations; i.e., rivers, or SAs in BC.
 * 1 Used in returns analysis only.
 * 2 Used in survival analysis only.
 * J. MacLean, FRS Scotland, unpublished data.
 * NuSEDS database, DFO Pacific, unpublished data.

doi:10.1371/journal.pbio.0060033.001
Salmon Farming Affects Wild Salmon

interbreeding with escaped farm salmon, in addition to disease or other impacts. Estimated impacts in British Columbia may also be lower because we aggregated over large numbers of populations for pink, chum, and coho salmon, because estimates of fishing mortality were only available at a very coarse scale. The individual populations may vary in their exposure to salmon farms.

The large apparent impact of Atlantic salmon farming on Irish sea trout, in contrast, cannot be explained by interbreeding. In the mid-western region of Ireland (the exposed region), the total rod catch decreased from almost 19,000 sea trout in 1985 to 461 in 1990 [16]. In the few rivers where data were available, catch declines could not be explained by reduced effort [16]. Welsh sea trout catches (the controls) have remained relatively constant during the same time period, whereas fishing effort has decreased considerably [17]. Sea trout (anadromous brown trout) might be expected to experience higher mortalities, because they spend lengthy periods in coastal areas near salmon farms, relative to Atlantic salmon, thus being exposed to disease or other impacts. Estimated impacts in British Columbia may also be lower because we aggregated over large numbers of populations for pink, chum, and coho salmon, in addition to disease or other impacts. Estimated impacts in British Columbia may also be lower because we aggregated over large numbers of populations for pink, chum, and coho salmon, because estimates of fishing mortality were only available at a very coarse scale. The individual populations may vary in their exposure to salmon farms.

The large apparent impact of Atlantic salmon farming on Irish sea trout, in contrast, cannot be explained by interbreeding. In the mid-western region of Ireland (the exposed region), the total rod catch decreased from almost 19,000 sea trout in 1985 to 461 in 1990 [16]. In the few rivers where data were available, catch declines could not be explained by reduced effort [16]. Welsh sea trout catches (the controls) have remained relatively constant during the same time period, whereas fishing effort has decreased considerably [17]. Sea trout (anadromous brown trout) might be expected to experience higher mortalities, because they spend lengthy periods in coastal areas near salmon farms, relative to Atlantic salmon, thus being exposed to disease or parasites for a longer time [18].

The time period over which we are estimating impacts of aquaculture includes the establishment of the industry in each region. Improvements in management as industries mature may explain our finding that impacts of salmon farming on wild salmon do not increase linearly with the tonnage of farmed salmon. Better management should decrease the impact of salmon farming on a per tonne basis, although such improvements may not be able to keep pace with the growth of the salmon farming industry. The estimated reduction in survival of wild salmonids is large, and would be expected to increase if aquaculture production increases.

Materials and Methods

We modeled survival and, in a separate analysis, total returns to each stock, using a general linear mixed effects model for each region. To model survival, we used a Ricker model extended to include the production of farmed salmon in the area through which exposed juvenile salmon migrated, with random effects for each stock and year [19].

Let \(S_y \) be an index of the number of fish that smolted, i.e., migrated to sea in the spring in year \(y \) from stock \(i \), let \(R_y \) be the estimated number of those fish that would subsequently return to spawn in the absence of farming, and let \(P_y \) be the aquaculture production that those smolts were exposed to (in tonnes). The dynamics are assumed to be given by

\[
\log\left(\frac{R_y}{S_y}\right) = \beta_0 + a_i + d_i + \beta_i S_y + \gamma (P_y)^{\gamma} + e_{i,y}
\]

where \(\beta_0 \) is the fixed intercept for the average stock and year with no aquaculture production, \(a_i \) is the random deviation of the \(i \)th stock intercept from \(\beta_0 \), \(d_i \) is the random deviation of the \(i \)th year, \(\beta_i \) is the fixed slope of mortality (the density dependence parameter) that will vary with each stock \(i \), and \(\gamma \) is the coefficient of aquaculture mortality that is assumed to scale with a possibly nonlinear function of aquaculture production, \((P_y)^{\gamma} \). The random error, \(e_{i,y} \), is assumed to be first order autocorrelated. We assume the \(a_i \)'s and \(d_i \)'s come from normal distributions with zero mean. The autocorrelation and the random year effect are included to account for established temporal and spatial correlations (respectively) in environmental effects [20].

The effects of aquaculture are summarized by the coefficient \(\gamma \) for each region. The regional coefficients were combined using meta-analysis to obtain an overall estimate of the change in wild salmonid survival related to aquaculture. Because the best functional form for the aquaculture term in the model \((P_y)^{\gamma} \) was not known, we investigated a linear increase in impacts with aquaculture, a square root relationship, and a square root relationship. We selected models by AIC, and we tested our results under alternative formulations.

To test the robustness of the conclusions, and because only returns data were available for some regions, we repeated the analysis with number of returning adults as the response variable. This analysis used Equation 1 but dropped the \(S_y \) and \(\beta_i \) terms. The response variables for this analysis included rod catches, rod plus marine catches, counts of salmon returning to rivers, and estimates of returns to rivers in the absence of fishing (see Data sources and treatment, below).

Outer Bay of Fundy salmon in New Brunswick, Canada, have been reduced to zero in one river and to a handful in another river. For this region only, we assumed negative binomial errors.

For the meta-analysis, we added a subscript, \(k \), to identify each region, to \(\gamma \), which summarizes the effect of aquaculture for each region. For a fixed assumption about \(k \), the \(\gamma_k \)'s are in the same units and can be directly compared. We modeled the effects of aquaculture as a mixed effects model,

\[
\gamma_k \sim N(\alpha_0, \sigma^2 + s_k^2)
\]

where \(\gamma_k \) is the estimated value of \(\gamma_k \), \(\alpha_0 \) is the intercept, \(\sigma^2 \) is the among-region variance, and \(s_k^2 \) is the variance of the \(k \)th estimate (which is taken from the analysis in Equation 1, and is held fixed). A fixed effects meta-analysis is obtained by constraining \(\sigma \) to be zero.

We used maximum likelihood estimation and selected models by AIC. For robustness, we considered five classes of models: different regions used as controls, different mixed model assumptions, differ-
salmon. Farmed salmon production for all of Scotland was used in modeling [28], because regional production data were not available.

Ireland Atlantic salmon. Estimates of marine survival to one sea winter for hatchery (and two wild) Atlantic salmon populations from Ireland and Northern Ireland (1980–2004) were collected andRegen. The ICES Working Group on North Atlantic Salmon [28]. Because only survival estimates are provided, these data were only used in the survival analysis. Salmon from hatcheries on the Screebe, Burrishole, Delphi, and Bunowen Rivers were considered exposed. Populations from hatcheries on the Shannon, Erne, Lee, Bush, and Corrib Rivers, plus wild populations from the Bush and Corrib Rivers were used as controls.

Production data were not available on a regional basis, so national values [28] were apportioned to bays into which exposed rivers empty by assuming that 30% of national production is in the Kilkieran Bay, 10% is in Clew Bay, 5% is in each of Killyary Harbour and Ballinakill Bay, and the remainder is distributed based on maps of salmon distributions from the Irish Marine Institute [25], and they approximately match stock numbers collected by the Central Fisheries Board in the years for which stock numbers are available (P. Gargan, personal communication). Years in which each bay was fished were obtained from the Central Fisheries Board (P. Gargan, personal communication) and in these years, the fished bays are assigned a production of zero. All exposed rivers empty into bays with salmon farms [25], while control rivers are at least 55 km away from the nearest farm.

Newfoundland, Canada. Two data sets from Newfoundland were examined—marine survival estimates of wild Atlantic salmon from four rivers from 1987 to 2000 were used in the returns modeling [31]; salmon farming in Newfoundland is confined to Bay d’Espoir on the south coast [32] (http://www.fishag.gov.nl.ca/aquaculture/pdf/aqua__sites.pdf). Only the Conne River (in Bay d’Espoir) was considered exposed; the Little River (also in Bay d’Espoir) was excluded because it has been regularly stocked [31]. The Exploits and Rocky Rivers were also removed from the analysis because of stocking. This left three control rivers for the survival analysis: the Campbellton River, the Northeast Brook (Trepassey), and the Stour Brook. The returns data were from 18 control rivers: Campbellton, Crabbes, Fischells, Flat Bay Brook, Highlands, Humber, Lomond, Middle Brook, Middle Barachois, Northeast Brook (Trepassey), Northeast (Placentia), Northwest, Pinchot Brook, Robinsons, Salmon, Terra Nova (upper and lower), Tormore and Western Atlantic Salmon farming in Newfoundland is highly concentrated in the Quoddy region of the outer Bay of Fundy (http://www.gnb.ca/0177/10/Fundy.pdf), although some farms are also found along the Nova Scotia coast of the Bay of Fundy. Salmon from control rivers enter into the Atlantic directly (LaHave River) or into the Gulf of St. Lawrence (Restigouche River, Miramichi River, Catarman Brook) and do not pass by farms during their migrations. The same controls are used for all comparisons in New Brunswick and Nova Scotia. Absolute catches of pink salmon from the river mouths were used in modeling [28,35–40]. Outer Bay of Fundy salmon must pass through an area containing many salmon farms early during their migrations [34]. Farmed salmon production data are from Fisheries and Oceans Canada (DFO) Statistical Services [32].

New Brunswick and Nova Scotia, Canada. We compared Atlantic salmon returns to six rivers in the Bay of Fundy (New Brunswick and Nova Scotia, Canada) to returns to four rivers from other areas of New Brunswick and Nova Scotia. We grouped the six exposed rivers into three groups and estimated the impact of aquaculture on each group separately, because salmon from these three groups have different degrees of exposure to salmon farming. The three groups of exposed rivers are the inner banks (Fundy North, Big Salmon Rivers), the Saint John River group (Saint John and Nashwaak Rivers), and the outer Bay of Fundy group (St. Croix and Magaguadavic Rivers). Salmon farming in New Brunswick is highly concentrated in the Quoddy region of the outer Bay of Fundy (http://www.gnb.ca/0177/10/Fundy.pdf), although some farms are also found along the Nova Scotia coast of the Bay of Fundy. Salmon from control rivers enter into the Atlantic directly (LaHave River) or into the Gulf of St. Lawrence (Restigouche River, Miramichi River, Catarman Brook) and do not pass by farms during their migrations. The same controls are used for all comparisons in New Brunswick and Nova Scotia. Absolute catches of pink salmon from the river mouths were used in modeling [28,35–40]. Outer Bay of Fundy salmon must pass through an area containing many salmon farms early during their migrations [41]. Although Saint John River salmon enter the ocean in an area without

Scotland catch data. We compared rod catches of sea trout in Ireland’s Western Region to rod per-in-river fixed engine catches in Wales, from 1985 to 2001 (there are no fixed engine fisheries directed at sea trout in Ireland). Salmon farming is concentrated in the Western Region (Conmarea area) of Ireland, but does occur in other parts of the country [25]. Based on farm locations [25], it was estimated that all rivers considered exposed are located less than 50 km from a salmon farm, but most will enter the ocean less than 30 km from a salmon farm. There is no salmon farming in Wales. There were 16 rivers in Western Ireland considered exposed: Athy, Bificial (Lower), Bificial (Middle), Bificial (Upper), Burrishole, Costello, Crumlin, Delphi, Erriff, Gowla, Inagh, Inverbeg, Invermure, Kylemore, Newport, and Screebe [16]. The following 32 Welsh rivers served as controls: Aerlon, Afn, Arto, Clededaw, Clwyd, Conway, Dee, Dwyfawr, Dwyf, Dyfi, Dysynni, Glaslyn, Gweneddethr, Gwyrfai, Llŷn, Lougher, Mawaddach, Neath, Nevin, Ogmore, Ogwen, Rheder, River Teifi, Taf, Taff, Teifi, Tywi, Usk, Wyve, and Ystwyth [26,27]. Trout caught and released are included in catch from both countries. Only catch estimates were available for most of these rivers. Recruitment could not be derived, because anadromous brown trout interbreed with freshwater resident trout, about which very few data are available, so this stock was only included in the returns modeling (not survival). Farmed salmon production for all of Ireland was used in modeling [28], because the majority of farms are in the region where the exposed populations breed. This will tend to have a conservative effect, resulting in a lower estimate of the impact of aquaculture, per tonne of salmon farming.

Scotland count data. We also used counts of Atlantic salmon of all ages returning to rivers from 1960–2001 in Scotland from Thorley et
salmon farms, they are known to pass through the region containing many farms early during their migrations [41]. Salmon from inner Bay of Fundy rivers are considered exposed to salmon farming despite being up to 260 km away because of historical information indicating that juvenile salmon from these populations are found during the summer and fall in the area where salmon farms are currently located. However, the evidence that this region is an important habitat for inner Bay of Fundy and Saint John River populations is mixed [43]. For this reason, we ran an alternative model with only outer Bay of Fundy populations considered exposed, and all other New Brunswick and Nova Scotia rivers as controls.

For all New Brunswick rivers, an estimate of egg deposition was used as an index of spawners, to account for a significant increase in the age of spawners in many rivers over the study period. The number of grilse (salmon maturing after one winter at sea) and large spawners (repeat spawners or salmon maturing after two or three winters at sea) for each year in each river was multiplied by a river-specific estimate of fecundity for a salmon of that size. Then, the index of spawners in a given year was derived by adding up all the eggs that could produce smolts in a year y, using river-specific ages at smolting from the literature. Returning hatchery-origin spawners are also added to the “spawners” but not to “returns.” “Recruits” is the number of grilse that return to each river in year y + 1, so that \(\sum \) in (Equation 1) is the number of grilse returning per egg that would have smolted in year y. Estimates of returns to rivers from traps and other surveys were used in the returns analysis. No corrections were made to account for marine fisheries, but marine exploitation has been quite limited since the late 1990s, when salmon farming became a substantial industry [44]. Farmed salmon production data are from DFO Statistical Services [32].

British Columbia, Canada, coho salmon. For coho salmon in British Columbia (BC), spawner estimates are based on DFO’s escapement estimate database (NuSEDS), which includes estimates of spawning salmon of all species for hundreds of rivers and streams on the BC coast since 1950 (P. VanWill, DFO Pacific, unpublished data). We considered rivers on the east side of the Queen Charlotte and Johnstone Straits to be exposed (all rivers from Wakeman Sound to Bute Inlet, DFO Statistical Areas [SAs] 12 and 13). All rivers on the BC Central Coast from Finlayson Channel to Seymour Inlet (SAs 8–11) were considered controls. Estimates were available as a single time series for the exposed area, and a time series for each SA for the controls. An index of recruits per spawner was generated by linking up returns with spawners according to age distributions given in Ryall et al. (1999) [50], to 1998, and then the average values from 1988–1998 for the subsequent years, to 2003.

Supporting Information

Figure S1. Survival of Salmonids in Control (Black) and Exposed (Blue) Stocks, along with Aquaculture Production (Red)

The returns have been summarized by a multiplicative model \(\log (\text{return}) = a_d + a_s + e_y \); the mean survival across stocks for each year is plotted. Survival for exposed Sea River stocks have been multiplied by 10 for clarity (dashed line). Survival is estimated across different portions of the life cycle in different regions; from smolt to adult for Irish salmon and Newfoundland, from egg to adult for Bay of Fundy and Saint John River stocks, and from adult to adult in BC stocks.

Table S1. Results of Alternative Models for the Survival Analysis

Effect size estimates (y’s) and their standard errors have been multiplied by 10\(^3\), 10\(^4\), or 10\(^5\) (as labeled), to make numbers easier to read.

Table S2. Results of Alternative Models for the Returns Analysis

Effect size estimates (y’s) and their standard errors have been multiplied by 10\(^3\), 10\(^4\), or 10\(^5\) (as labeled), to make numbers easier to read.

Text S1. Alternative Model Formulations, Including the Bayesian Analysis

Found at doi:10.1371/journal.pbio.0060033.s0001 (56 KB PDF).

Acknowledgments

We thank W. Blanchard, J. Gibson, C. Herbinger, J. Hutchings, J. MacPherson, K. Mengersen, and R. Routledge for statistical assistance in obtaining and understanding data. We thank W. Blanchard, J. Gibson, C. Herbinger, J. Hutchings, J. MacPherson, K. Mengersen, and R. Routledge for statistical assistance in obtaining and understanding data.

Author contributions. J.S.F. and R.A.M conducted and designed the project jointly. All writing and analyses were done by J.S.F, with
guidance from RAM, with the exception of the SAS code for performing the meta-analysis, and the Bayesian section of the Text S1, which were written by RAM.

Funding. This work was supported by the Lenfest Ocean Program,

the Censuses of Marine Life, and the Natural Sciences and Engineering Research Council of Canada.

Competing interests. The authors have declared that no competing interests exist.

References

